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accurate prescription for structure-factor estimation 
(Mathieson, 1979, 1984b). 

The small CuInSe2 single crystal used in this study 
has proved to be a convenient, but in no way special, 
specimen with which to demonstrate some of the 
possibilities of the Aoj, A20 technique. The experi- 
mental observations have general significance for the 
modelling of crystals, since such models are mostly 
based on homogeneous mosaic spread (by contrast 
see Boehm, Prager & Barnea, 1974; Le Page & Gabe, 
1978). The characteristics of the local mosaic distribu- 
tions have proved to be quite diverse, even for the 
limited number of aspects in which the crystal has 
been viewed. Clearly, further work, with a variety of 
crystal specimens, is required to realize and appreci- 
ate the full potential of this technique. 

One of us (AWS) acknowledges the financial 
support of a CSIRO Postdoctoral Award. 

Note  added  in proof: A more accurate estimate of the 
diameter of Fig. 8(c) (see the end of § 3) can be 

obtained by carrying out a two-dimensional convol- 
ution of the functional forms associated with (/z), or, 
h, c and the detector aperture, i.e. a simulation of an 
l(Ato, A20) distribution. Such a calculation yields a 
value of ---0.051 ° . 

References 
BOEHM, J. M., PRAGER, P. R. & BARNEA, Z. (1974). Acta Cryst. 

A30, 335-337. 
COMPTON, A. H. & ALUSON, S. K. (1935). X-rays in Theory and 

Experiment. New York: Van Nostrand. 
DUISENBERG, A. J. M. (1983). Acta Crysr A39, 211-216. 
HOYT, A. (1932). Phys. Rev. 40, 477-483. 
LE PAGE, Y. & GABE, E. J. (1978). J. Appl. Crysr 11,254-256. 
MATHIESON, A. McL. (1979). Acta Crysr A35, 50-57. 
MATHIESON, A. McL. (1982). Acta Crysr A38, 378-387. 
MATHIESON, A. McL. (1984a). J. Appl. Crysr 17, 207-209. 
MATHIESON, A. McL. (1984b). Acta Crysr A40, 355-363. 
MATHIESON, A. McU (1984c). Aust. J. Phys. 37, 55-61. 
MATHIESON, A. McL. & STEVENSON, A. W. (1984). Ausr J. Phys. 

37, 657-665. 
MATHIESON, A. McL. & STEVENSON, A. W. (1985). Acta Crysr 

A41, 290-296. 
PARKES, J., TOMLINSON, R. D. & HAMPSHIRE, M. J. (1973). J. 

Appl. Crysr 6, 414-416. 

Acta  Cryst. (1986). A42, 230-240 

On Absolute Scaling in Protein Crystallography using Sums of Low-Resolution Intensities 
and Wilson Statistics at Low Resolution 

BY MICHEL ROTH 

Inst i tut  L a u e - L a n g e v i n ,  156X, 38042 Grenoble C E D E X ,  France 

(Received 11 July 1985; accepted 23 December 1985) 

Abstract 
A method of absolute scaling of diffraction data is 
proposed, based on the calculation of the sum of the 
intensity diffracted at low resolution (Bragg d spacing 
> 15/~). This sum is proportional to the mean-square 
deviation of the scattering-length density in the unit 
cell, and this property is used to determine the scale 
factor. The method is applied to the case of neutron 
diffraction using contrast variation experiments with 
biological molecules, and it is used to check the 
validity of some assumptions concerning the system 
under study, such as the global rate of H / D  exchange 
or the uniformity of scattering-length density in the 
molecules. The use of this method requires an 
asymptotic correction of the sum of intensity. This 
correction is based on Porod's law, whose application 
to diffraction experiments is discussed, in particular 
for contrast variation experiments. An analysis of the 
spherical average of the diffracted intensity as a func- 
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tion of the scattering vector, compared to isotropic 
solution scattering, allows the conditions of applica- 
bility of Wilson statistics to be specified at low and 
medium resolution, i.e. the random statistical model 
underlying the Wilson statistics in this scattering 
range to be defined. 

I. Introduction 

In a structural study of complex molecules, such as 
biological macromolecules, by low-resolution 
neutron crystallography using H 2 0 / D 2 0  contrast 
variation, it is essential to know all the data concern- 
ing the contrast of all components of the system 
accurately. In practice, these values are usually calcu- 
lated from the available information on the chemical 
composition of the components, making assumptions 
on the degree of H / D  exchange on different sites 
within the components. Looking for a simple method 

© 1986 International Union of Crystallography 
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that will allow one to check the consistency of these 
contrast calculations, we tried to use the variation 
with D20 concentration in the solvent of the sum of 
the intensities measured at different contrasts after 
relative scaling (Roth, Lewit-Bentley & Bentley, 
1984). A first sketch of the method was presented in 
the paper by Moras, Lorber, Romby, Ebel, Giege, 
Lewit-Bentley & Roth (1983). It turned out to be a 
method of absolute scaling of diffraction data, not 
necessarily restricted to contrast variation experi- 
ments. 

The use of the sum of diffracted intensities as a 
means of absolute scaling of diffraction data has 
already been proposed by several authors (Kartha, 
1953; Krogh-Moe, 1956; Norman, 1957; Rothbauer, 
1978), as recalled by Giacovazzo (1980). Its usual 
application assumes that the measurements are per- 
formed to atomic resolution, i.e. to the limit of 
reciprocal space where the scattering power of atoms 
tends to zero because of their form factors (in the 
X-ray case) and because of the temperature factors. 
This is essential not only to ensure the convergence 
of the sums but also because the method relies on an 
atomic description of the scattering density. In the 
present paper we use the sum of intensities limited 
to low resolution only; this quantity depends mainly 
on the mean scattering density of the components of 
the molecule and of the solvent. 

The intensity sum in low-resolution diffraction is 
equivalent to the integrated intensity in small-angle 
scattering, and its use for absolute scaling was pro- 
posed by Luzzati, Tardieu, Mateu & Sturhmann 
(1976) for X-ray small-angle scattering on biological 
solutions. The method was never widely used because 
the measurement of the forward-scattered intensity 
I(0), made by extrapolating the intensity scattered at 
very small angles to zero angle using the Guinier law, 
leads to simpler results. It is unfortunately not trans- 
posable to diffraction experiments because of the 
paucity of data measured in the Guinier region. 
Diffraction is subject to sampling of intensity in 
reciprocal space on a grid too large with respect to 
the Guinier region (see Fig. 1). 

Even though the intensities become, in general, 
weak towards the outer limit of the low-resolution 
region (i.e. around 0.3-0.4/~-~ in reciprocal space) 
compared to the intensities measured at smaller Bragg 
angles, their contribution to the sum is not negligible. 
The mean intensity at the limit of low resolution can 
be considered as consisting of two terms, one due to 
the global shape of the molecule and the other due 
to internal fluctuations of scattering-length density, 
provided there are no strong correlations between the 
two. The first intensity term decreases with Q - 4  

(Porod's law) under certain conditions and it is 
necessary to add the corresponding contribution 
extrapolated to infinite Q values to the sum of 
intensities actually measured. A by-product of the 

application of Porod's law in a contrast variation 
experiment is the possibility to determine the areas 
of interfaces between the constituents of the lattice. 
This type of analysis is currently used in small-angle- 
scattering applications in material sciences and was 
proposed a while ago by Luzzati, Witz & Nicolaieff 
(1961) for proteins. The second term of the mean 
intensity varies little with Q in this region of 
reciprocal space and its order of magnitude corre- 
sponds fairly well to what one would obtain from a 
random mixture of amino acids (whose scattering- 
length densities are very different from one another) 
in a protein. The contribution of this term has to be 
subtracted in the definition of the sum of low-reso- 
lution intensities we propose to use. 
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Fig. 1. Average intensity at low resolution. Example of averaged 
diffraction intensity as a function of the scattering vector 
(spherical average, see text § 3) compared to calculated small- 
angle scattering intensity. The experimental data (o) are from 
the neutron diffraction of a tRNA Asp-aspartyl tRNA synthetase 
crystal at match point of tRNA (Moras, Lorber, Romby, Ebel, 
Giege, Lewit-Bentley & Roth, 1983). The structure is body cen- 
tered (I432). The systematically absent reflections of this space 
group were not taken into account in the average. The insert at 
the top indicates the number of unique reflections contributing 
to the average at each point. The point 0 on the ordinate scale 
represents the intensity diffracted coherently by the Nm = 48 
molecules in the unit cell, calculated using (6.3). The intensity 
scattered incoherently at angle 0 by the same number of 
molecules is N,,,/2 times smaller. The factor 1/2 comes from 
the body-centered symmetry [Mp = 2, see (6.4)]: the diffraction 
of two molecules related by a centering translation remains 
coherent in a spherical average, therefore each independent 
scatterer is constituted by Mp molecules, their number is N,,,/Mp 
instead of Nm and their scattering power is M 2 times larger. 
This incoherent intensity at angle 0 is represented by the common 
origin of the solid and dashed lines. The two curves correspond 
to the isotropic small-angle scattering intensity calculated with 
two tentative models for the synthetase. These models were 
determined by a search in the unit cell and least-squares fit 
against the unaveraged diffraction data (agreement factor R 
40%). The conclusion is that to find a common scale between 
the averaged diffraction intensity and the isotropic small-angle 
scattering of a single molecule, one has to multiply the latter by 
MpNm. 
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In the first part, § 2, we shall establish the relation- 
ship between the sums of intensities and the param- 
eters of contrast in the system. The second part, § 3, 
will discuss the application of Porod's law to a diffrac- 
tion experiment with a multicomponent system, using 
contrast variation. The third part, § 4, deals with the 
corrections just mentioned and presents some tests 
of the method using model calculations. The fourth 
part, § 5, describes the method of calculation of the 
absolute scale factor and presents some results 
obtained in two experimental cases. In § 6, we will 
present a method of calculation of Fobs(0) and discuss 
the application of Wilson's statistics to low resolution 
in protein crystallography, and terminate with a few 
remarks in § 7. 

2. Theoret ical  outl ine - sum of  intensity and 
contrast variation 

2.1. Sum of  intensity and mean-square deviation of  
density 

We define the structure factor per unit cell as usual 
by 

F ( H ) =  ~ p(r) e x p ( i H . r )  dr, (2.1) 
unit cell 

where H is a reciprocal-lattice vector and p(r) is the 
scattering-length density, and the intensity by 

I (H)  = F (H)F(H)* .  (2.2) 

We consider the sum s of the intensities over all 
reciprocal-lattice vectors except the origin: 

s =  Y. I(H).  (2.3) 
H # 0  

By using the inverse relation 

p ( r ) = ( 1 / V )  Y. F(H)  exp ( - i l l .  r), (2.4) 
H 

it can be shown that this sum is equal to 

s= V2[p(r) - p(r)] 2, (2.5) 

where the averages indicated by the bars are taken 
over the unit cell whose volume is equal to V. 

2.2. Introduction of  step functions to describe the 
geometry of  the components 

We shall assume that the system is a three- 
component system. It could be a biological molecule 
consisting of nucleic acid and protein in a solvent as 
a third component, or a protein associated with a 
detergent in a solvent, or a three-component three- 
dimensionally-ordered liquid crystal. The subsequent 
relations can be easily generalized to a larger number 
of components. With three components, the scatter- 
ing-length density can be written in the following way 

(Sturhmann, 1982): 

3 
p(r) = Y~ [p, + 8pi(r)]Fi(r), (2.6) 

i=1 

where Fi(r) is a step function equal to 1 inside the 
component i and to 0 outside it, pi is the average 
scattering-length density of the component i and 
8pi(r) is the local deviation of p(r) with respect to pi. 
With the assumption that there are no empty regions 
in the unit cell [i.e. 3 ~'~i=1 Fi(r) = 1], the sum s can be 
expressed, according to (2.4), as 

s = V 2 ( p , -  p3)2f (1 - f )  
i 1 

with 

-- 2 ( p l -  P 3 ) ( P 2 -  P3)fl  f2  + 8 P  2 )  (2.7) 

3 
602 = Y', f o  "2, (2.8) 

i=1 

2 where o'i is the average value of 6pi(r) 2 in the com- 
ponent i, and 

f = ( 1 / V )  I Fi(r) dr, (2.9) 
unit cell 

f being the volume fraction of the component i in 
the unit cell. The factor p i -  p3 is the contrast of the 
component i with respect to the solvent. 

2.3. Contrast variation 

In D20 /H20  contrast variation experiments, the 
structure factor F(H)  is a linear function of the D20 
concentration (Worcester, 1976) and is given by 

F(H)  = Fo(H) + cAF(H) (2.10) 

with 

c = CD20/( CH20 + CD~O), ( 2.11 ) 

where CD20 and CH20 are the molar concentrations of 
D:O and H20 respectively. As a consequence, s is a 
quadratic function of c, and can be written according 
to (2.7) as 

s= V 2 Ap,2 f ( 1 - f ) ( c - c , )  2 
i 1 

-2aOlao2f, f2(c-c,)(c-c2)+sp2). (2.12) 

The following notations are used: 
the linear variation of the contrast of the component 

i as a function of c is written 

Pi -- P3 = P0i + c A o i ;  (2.13) 

the corresponding concentration of zero contrast 
(match point) is given by 

ci = -poi /  Api. (2.14) 
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AS shown by Roth, Lewit-Bentley & Bentley (1984), 
the intensity Ia (H), which is equal to the square of 
the partial structure factor AF(H) in (2.10), can be 
determined directly from the diffraction data. It is 
the structure factor corresponding to the sites of 
exchangeable hydrogens in the system, i.e. the Fourier 
transform of ApiFi(r) [see (2.6), (2.13)] plus a minor 
contribution from the 8pi(r)Fi(r) terms. The 
expression of the sum of these intensities Ia (H) as a 
function of contrast parameters is given by the 
coefficient of c 2 in (2.12). 

The expression of the sum of intensity (2.7) differs 
from that given in an earlier paper (Moras, Lorber, 
Romby, Ebel, Giege, Lewit-Bentley & Roth, 1983), 
in addition to the fact that the 6p 2 term was neglected 
there, because here the first term, I(0), is excluded 
from the sum. The sum considered in the first paper 
is equal to vZp2(r) instead of (2.5) because 1(0)= 
V2p-~ 2, according to (2.1). 

3. Porod's law in low-resolution diffraction 

3.1. Asymptotic behavior of mean intensity diffracted 
at low resolution 

As is well known in small-angle experiments on 
disordered systems, the small-angle scattering inten- 
sity of a system with sharp and randomly oriented 
interfaces decreases asymptotically with Q-4 for large 
values of Q, Q being the scattering vector [Q = 
4qrsin(0)/A with 20=scattering angle and A= 
neutron wavelength]. This is reasonably true on the 
condition that (1) the product QDm, Dm being the 
smallest diameter of the scattering object, is larger 
than about 5 in the Q range under consideration 
(typically: 0.25 < Q < 0.4/~-~, i.e. 25 > d > 15/~ in 
Bragg d spacing), (2) the scattering density is 
homogeneous inside the components of the system, 
or, if not, the internal inhomogeneity does not pro- 
duce rapid intensity variations in this Q range, (3) 
the interfaces do not show fractal properties (Bale & 
Schmidt, 1984). Experimental evidence of this 
asymptotic behavior of the intensity in small-angle- 
scattering experiments was given by Luzzati, Witz & 
Nicolaieff (1961), Tardieu, Mateu, Sardet, Weiss, 
Luzzati, Aggerbeck & Scanu (1976) and Gulik, 
Montheilhet, Dessen& Fayat (1976) for biological 
systems, Hendrikx & Charvolin (1981) and Cabane 
& Duplessix (1982) for lyotropic and micellar phases. 

The same asymptotic behavior is observed in low- 
resolution diffraction experiments, not for the 
individual reflection intensities I(H), but for their 
spherical averages, I(Q). This average is calculated 
in spherical shells defined by a mean Q value and a 
width AQ: 

I(Q)=(I(H)) (3.1) 

for Q-AQ/2<II-II< Q+AQ/2. 

The spherical averaging transforms the intensity 
diffracted coherently by the molecules in the lattice 
into an intensity distribution equivalent to that given 
by the small-angle scattering of randomly oriented 
single molecules free of interparticle interface. This 
is demonstrated in Fig. 1 and explained in more detail 
in the caption and discussed in § 6. This type of 
averaging is used currently for Wilson plots 
(Giacovazzo, 1980). The applicability of Porod's law 
to averaged diffraction data is shown in Figs. 2, 3 
and 4. 

At the origin of Porod's law is the fact that the 
Patterson function P(R) in a system with sharp inter- 
faces is a first-order linear decreasing function of R 
which can be written (spherical average) 

P(R)= P(O)-(R/4) E ~, (p,-pj)2Su. (3.2) 
i j 

Here the two sums are to be taken over all com- 
ponents, (p , -  pj) and S o are respectively the contrast 
and the area of the interface between the components 
i and j. The Q-4 variation of the intensity is obtained 
by a Fourier transformation of (3.2). For non-primi- 
tive lattices, i.e. lattices with centering translation 
symmetries, one also has to take into account similar 
first-order expansions of P(R) in the vicinity of the 
points equivalent to the origin R = 0, by centering 
translation. The asymptotic expression of I(Q) is then 
given by 

I(Q)=(2¢rMpQ -4) ~,~, (pi-pj)Esu, (3.3) 
i i 

where Mp = (number of centering translations + 1). A 
similar expression for solution scattering was intro- 
duced first by Luzzati, Tardieu, Mateu & Sturhmann 
(1976) (see also Hendrikx & Charvolin, 1981). 

3.2. Contrast variation 

The application of (3.3) to a contrast variation 
experiment is straightforward. With a three- 
component system it reads: 

I(Q)=(2~rMpQ-') Ap2S,(c-c,) 2 
i 1 

-2AplAp2S12(c-cl)(c-c2)], (3.4) 

where SI and Sz are the external surface areas of the 
components 1 and 2 respectively, i.e. 

Sl = S~3 + Sn,  $2 = $23 + S n .  (3.5) 
The asymptotic expression for Ia (Q) is deduced from 
(3.4): it is given by the coefficient of c z in (3.4). 

As can be seen from (3.4), the variations of Q4I(Q) 
as a function of c are parabolic. Comparison with 
the parabolic variations of s with respect to c, (2.12), 
shows that the latter are governed by the values of 
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the volumes of the components (i.e. the volume frac- 
tions f ) ,  whereas the former are governed by the 
values of the interface areas. These two variations are 
usually not homotectic in experimental cases (see 
Figs. 5 and 6), which is direct evidence of a difference 
in the surface/volume ratio of the two components 
of the molecule• The concentration c of the minimum 
of  the sum of  intensities is, in most real cases where 
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Fig. 2. Spherical average of diffraction intensity from different 
crystals of  tRNA Asp - aspartyl tRNA synthetase complex at 
various contrasts. The contrasts are specified by the concentra- 
tion c (2.11) indicated (%D20).  The values of 33 and 61% are 
close to the concentrations of zero contrast of the synthetase 
and the tRNA respectively. The intensity Ia(H) is defined in 
§ 2. The dashed curves represent the average Q-4 variations after 
fitting of (4.5), range of fit: 0.25 < Q < 0.35/~-~. The magnitude 
of errors on intensity is given by the two error bars. 
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Fig. 3. Q4I (Q) vs Q4 diagram of Porod's law with (a) experimental 
data (same as Fig. 1). The finite slope of the dashed straight line 
comes from the non-vanishing value of Ioo, (4.5). (b) Model 
data corresponding to the experimental data, calculated with a 
two-ellipsoid model for the molecule (R - 4 0 % ) .  
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Fig. 4. Same as Fig. 2 for a contrast variation neutron diffraction 
experiment on the satellite tobacco necrosis virus (Bentley, Lil- 
jas, Lewit-Bentley, Roth, Skoglund & Unge, 1986). The oscilla- 
tions of the average intensity are more pronounced than in the 
case of Fig. 2. They are due to the icosahedral shape of the 
protein capsid of the virus. The concentrations of 45 and 67% 
are close to the concentrations of zero contrast of the protein 
and the RNA respectively. The horizontal straight line represents 
the average value of I~.. 
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Apl~-Ap2, approximately equal to the volume- 
weighted average (cxfl + c2f2)/(fl +f2) of the zero- 
contrast concentrations c1 and c2 of the two com- 
ponents of the molecule, whereas the concentration 
of the minimum of the Q4I(Q) parabola is given by 
the average (ClS13-4-c2S23)/(S13-1t-$23), i.e. by an 
average weighted by the components/solvent inter- 
face areas. With the same approximation (Apl ~- Ap2), 
the quantity Q4I, a(Q ) depends only on the external 
surface of the whole molecule S13 + 523. 

4. Practical use of  the intensity sums 

4.1. Correction for series truncation 

Data collections are generally performed in a 
limited resolution range. The sum (2.3) has thus to 
be rewritten from a practical point of view: 

Q2 
s= ~ I(H)+Cp. (4.1) H~0 

The summation over H is made inside the resolution 
shell IHI < Q2, where Q2 is the resolution limit of data 
collection, and Cp is a truncation correction term. 
Assuming that Porod's law holds starting from a lower 
limit Q1 smaller than Q2, i.e. that according to (3.3) 
or (3.4) 

I (Q)=A/Q 4 (4.2) 

x106 l 
1.0 

0.5 ~s 

o 
0.5 C 

Fig. 5. Parabolic variation of the two sums of intensity SLa (4.6) 
and s [(5.4), (5.6), (5.7) and (5.8)] after scaling using (5.9) (then 
SLa= S), and of Porod's complement Cp (4.7) of SLR, as a 
function of the concentration c (2.11) in the case of the neutron 
diffraction experiment with contrast variation on the tRNA 
Asp-  aspartyl tRNA synthetase complex by Moras, Lorber, 
Romby, Ebel, Giege, Lewit-Bentley & Roth (1983). In that paper, 
a parabolic variation of the sum of intensity was shown, but the 
sum of intensity was not corrected for truncation by the Cp term, 
which is why the results differ somewhat from the present SLR 
variations. At the time, the importance of this truncation correc- 
tion was not well recognized and especially the fact that its 
variation with c is not proportional to that of the full sum SLR. 

for Q > QI, one finds, on the one hand, 

cp=[Q1/(QIq-Q2)]~ I(H),  (4.3) 
Q1 

where the summation is made in the spherical shell, 
in the reciprocal space, defined by QI < IH[ < Q2 and, 
on the other hand, 

Cp = 47rnA/ Q2. (4.4) 

The expression for A is given by (3.3) or (3.4) and n 
is the average density of reciprocal-lattice points in 
reciprocal space. 

Results of model tests of this method of evaluation 
of the intensity sums, using (4.1) and (4.3), are given 
in Table 1. The models used were simple geometrical 
models with uniform density. The agreement is quite 
good. As can be seen in Fig. 3 (bottom), the average 
value of Q4I(Q) may show some oscillations as a 
function of Q. The choice of Q1 and Q2 has therefore 
to be made carefully in order to fit into such a true 
or pseudo periodicity by averaging over one or several 
(pseudo)periods. 

4.2. Correction for non-uniformity of the density 

In small-angle scattering experiments, it is often 
necessary to give the following form to the asymptotic 
behavior of I (Q):  

I(Q)=A/Q4+Ioo (4.5) 

instead of (4.2). This takes into account the fact that 
the true measured intensity does not always tend to 
0 when the small-angle-scattering effects vanish, but 
towards a finite value Io~, representing background 
diffuse scattering from the sample (e.g. incoherent 
scattering, scattering from the solvent, or short-range 
atomic disorder). In diffraction experiments, 

r i(~Lu.l 

xlo B 

5 

015 C 

Fig. 6. Same as Fig. 5, for the case of the contrast variation 
experiment on STNV (Bentley, Liljas, Lewit-Bentley, Roth, 
Skoglund & Unge, 1986; same data series as Fig. 4). In this case 
s was scaled with respect to SLR using the factor K = Ko (see 
text § 5.2). The deviation between the curves SLR and s is ascribed 
to the inhomogeneity of the scattering density in the components 
of the virus. 
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Table 1. Results of  tests of  the method of  calculation of  the sum of  the intensity diffracted at low resolution and 
of  the determination of  the external surface area, using geometrical models with uniform density 

Column 
Column 
Column 
Column 
Column 
Column 
Column 
Column 

(3) gives the radius of  the spheres or the 1/2 axes of the ellipsoids constituting the model of  the molecule. 
(4) gives the volume fraction occupied by all these model molecules in the unit cell. 
(5) gives the true values sth of the sum of low-resolution intensity, in arbitrary units. 
(6) gives the value of s calculated using (4.1) and (4.3). 
(7) gives the value of  the correction term Cp included in s. 
(8) gives the Qt,  Q2 range used in applying (4.3). 
(9) gives the true external surface area of  the model per sphere or ellipsoid. 
(10) gives the same area determined using (4.9) and (5.2). 

(1) 
Model 

I sphere 
2 spheres 

2 ellipsoids 

I ellipsoid 

(2) (3) (4) (5) (6) (7) (8) (9) (10) 
Space group Dimensions (,~) f sth s Cp QrQ2 (A- t )  Sth (A 2) S (tl, 2) 

I432 25 0.071 65 800 66 700 9600 0.20-0.32 7850 8780 
I432 27 0.178 551 200 555 400 77 600 0.20-0.33 9160 9750 
1432 16.9, 25.2, 39.2 0-151 201 200 205 800 33 400 0-25-0.31 8930 9200 
I432 22, 22, 45 0.197 551 200 555 400 75 200 0.20-0.33 10 600 10 460 

P21212~ 20, 25, 50 0.177 812 900 815 900 105 500 0"25-0"35 11 850 12 250 

however, with a proper background-correction pro- 
cedure, all such background scattering is eliminated. 
It is nevertheless necessary to consider a finite Io~, 
but here Ioo represents the average in'tensity diffracted 
beyond low resolution, say at medium resolution. Its 
origin is related to the scattering-density fluctuations 
in the crystal on a scale finer than that of the overall 
molecular dimensions. These fluctuations contribute 
to the value of 8pi(r) in (2.6), i.e. to ~p2 in (2.7). One 
way of taking this effect into account is to assume 
that these short-range fluctuations are distributed at 
random within the components of the molecule. Their 
average contribution to the intensity in the low-reso- 
lution range is then constant and equal to Io~. This 
leads to the definition of a sum of low-resolution 
intensity, SLR , which will be used in practice instead 
of s, as 

Q2 
SLR = E I ( H ) +  Cp-(4rr/3)I~nQ32, (4.6) 

H~O 

by redefining Cp as 

Cp = [ Q,/  ( Q, + Q2) ] 

x I ( I t ) - ( 41r /3 ) I~on (Q~-Q  3) . (4.7) 

In so far as this assumption is valid, the values of 
SLR will correspond to expressions like (2.7) or (2.12) 
where the term ~p2 is discarded. Their quantitative 
comparison allows the calculation of an absolute 
scale factor K of the diffraction experiment. This will 
be discussed in more detail in § 5. 

4.3. A random model to estimate Ioo 

At medium resolution, a protein or a nucleic acid 
can be considered as consisting of a large number of 
a few rigid units, the amino-acid residues and the 
components of the nucleotides (i.e. the sugar-phos- 
phate groups and the bases or the base pairs). The 
effect of averaging the intensity in spherical shells is 

to cancel interparticle interference. The contribution 
to the average intensity of these units at medium 
resolution is given by the mean-square deviation of 
their total scattering lengths, the contribution of the 
mean value of these quantities (i.e. the contribution 
of the average scattering-length density of the com- 
ponents of the molecule) disappearing towards the 
end of the low-resolution range of diffraction. This 
is a consequence of the expression of the density 
(2.6). According to this model, I~ is given by 

Lo= K[Nr(b~--~)2+ N,(b ,  -b--~,)2], (4.8) 

where K is the absolute scale factor of the data (§ 5), 
Nr and N,  represent the number of amino-acid 
residues and nucleotide components in the unit cell 
respectively and br and b, the total scattering length 
of a given residue or nucleotide component respec- 
tively. The values of the b/s  and b, 's can be found 
in the papers of Worcester, Gillis, O'Brien & Ibel 
(1976) and Jacrot (1976). Their mean-square devi- 
ations, which appear in (4.8), depend on the composi- 
tion of the given protein or nucleic acid. For numeri- 
cal evaluations we used the example of the satellite 
necrosis tobacco virus protein coat (Ysebaert, van 
Emmelo & Fiers, 1980) as a typical representative of 
a protein and took an equal mixture of the four types 
of nucleotides A, U, C, G to calculate a value for a 
RNA. The values of these mean-square deviations 
were similar for both cases, i.e. 1.15 and 0.98 barn 
respectively, in H20 (1 b a r n =  100 fm2). As will be 
shown in §5.2, (4.8) gives the right order of magnitude 
compared to the values of Lo determined experi- 
mentally. The value of I~ is, in fact, dominated by 
the amino-acid residue contribution in these examples 
because Nr >> N,.  

4.4. Determination of  interface areas 

There are several ways to determine the values of 
$1, $2 and $12, using (3.4), (4.4) and (4.7), in practice. 
The simplest is to consider the value of Cp at the two 
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points of zero contrast c~ and c2 and at their mid-point 
Co = (cl + c2)/2. One thus obtains: 

Sx-" K'Cp(c2)/ Ap 2 (4.9) 

S2= K'Cp(cl)/  Ap 2 (4.10) 

s,2= K'{ECp( co) 
-[C.(c,)+c,,(cg]/2}/(ao,at,2) (4.11) 

with 

K ' =  KQ2/[81r2Mpn(c,-c2)2]. (4.12) 

These determinations depend in a sensitive manner 
on the values of the contrast parameters poi and Api 
and the volume fractions f ,  both directly and through 
the values of K, cl and c2. 

5. Absolute scale factor and discussion of results 

5.1. Absolute scale factor 

A direct application of the expression for the sums 
of intensity is the estimation of a scale factor for 
calculated intensities, Ica~c, corresponding to a given 
model, with respect to the measured ones, /robs. This 
integral scale factor is given by 

K =  V2[p(r)-p--~]2/s, (5.1) 

where p(r) is the model density. If it is the real density 
then K is the absolute scale factor. This method of 
calculating an absolute scale factor was first proposed 
by Kartha (1953) and then taken over by others (see 
Introduction). As a reference they used, for the case 
of X-rays, a density p(r) consisting of the individual 
electron densities of the atoms, supposed to be non- 
overlapping. In the field of small-angle scattering, in 
material science, this kind of scaling has also been 
known for some time. Luzzati, Tardieu, Mateu & 
Stuhrmann (1976) proposed it in a form similar to 
(5.1) for biological solution scattering experiments. 
The expression for K is particularly simple at zero- 
contrast concentration of one component. For 
instance, for c = c2, 

K =  V2Ap2(c2--C,)2f,(1--f~)/SLR(C2) (5.2) 

and K refers then to the model density p ( r )=  
Apl(c 2 -  cl)F~(r) of component 1. This kind of scale 
factor depending only on few simple parameters of 
the model (contrast and volume fraction) is some- 
times very useful, for instance in the case of a system- 
atic search of position, orientation and shape of a 
geometrical model in the unit cell of the crystal. In 
addition to speeding up the computing, it introduces 
an extra constraint in the calculation of the agreement 
factors between data and model, which makes the 
search more selective. This method was used as a first 
step in the location and modeling of the synthetase 
molecule (as a double ellipsoid) in the study of the 
complex tRNA Asp - aspartyl tRNA synthetase 

(Moras, Podjarny, Thierry, Rees, Giege, Lewit- 
Bentley & Roth 1986). 

5.2. Results for contrast variation 

In a contrast variation experiment, the experi- 
mental sum of the intensity SLR (4.6) and its theoretical 
counterpart s (2.12) are quadratic functions of c, each 
defined by three coefficients: 

S L R ( C )  = Aec2+ Bec+ De (5.3) 

s ( c )=  Arc2+ Btc+ Dr. (5.4) 

If there are no errors in the values of the experimental 
concentrations c, and using the hypothesis that the 
scattering-density inhomogeneities inside the com- 
ponents of the macromolecule are short-range 
randomly distributed fluctuations, then the scaling of 
these two parabolas leads to the following equations: 

K , , = A t / A , ; K b = B t / B e ; K a = D t / D e  (5.5) 
and 

At = V 2 ~= ap,2f~(1-f~)-2zap,apzf, f2 (5.6) 
i 1 

Bt = - 2  V 2 po,Ap,f(1 - - f )  ' 
i 1 

-2(po, Ap2 + Po2Ap,)Af2 ] (5.7) 

Dt = V 2 p2 , f (1 - f ) -2poxPo2 f l f 2  , (5.8) 
i 1 

where Ka, Kb and Ka are three different determina- 
tions of the absolute scale factor K. In this ideal case, 
one should have of course 

K.,= Kb= Ka = K. (5.9) 

Errors in the experimental concentrations c can be 
detected to some extent by comparing the concentra- 
tions of the minima of the two parabolas. In fact, 
although the values of the physical parameters in 
(5.6), (5.7) and (5.8) are not known with a very high 
precision, it is nevertheless possible to predict a rather 
narrow range (< 10% ) of values for the concentration 
of the minimum of (5.4). If such an error is suspected 
because of a large discrepancy between the minimum 
concentrations, one can use the least-squares pro- 
eedure of relative scaling of the measured data to 
correct some of them (Roth, Lewit-Bentley & Bentley, 
1984). 

The parameters whose values are most uncertain 
in contrast variation experiments are Apl and Ap2 
because in order to calculate them one needs to know 
the rate of H / D  exchange on the labile H sites of the 
macromolecule, which depends on their accessibility 
to solvent as well as other factors such as pH and 
composition of the solvent. Equations (5.5) to (5.9) 
allow the determination of three unknowns. They can 



238 ABSOLUTE SCALING IN PROTEIN CRYSTALLOGRAPHY 

thus be solved very easily with respect to Ap~, Aft2 
and K. 

This has been applied to the low-resolution neutron 
diffraction of crystals of the complex tRNA Asp-  
aspartyl tRNA synthetase described by Moras, 
Lorber, Romby, Ebel, Giege, Lewit-Bentley & Roth 
(1983). The quadratic variations of SLR and Cp are 
shown in Fig. 5. The values of Ap~ and Ap2 found 
correspond to a rate of exchange of 100% for the 
tRNA and 72% for the synthetase. This differs from 
the results published in the above paper, for the 
reason explained in the caption of Fig. 5. The calcula- 
tion of the concentrations of zero contrast gives 
cl = 0.674, c2 = 0.333 and Co = 0.407 for the tRNA, the 
synthetase, and the ensemble respectively. The total 
surface areas, S~ and $2, are found to correspond to 
an area of 6800A 2 per tRNA and 17 300/~2 per 
synthetase molecule, corresponding to a surface/ 
volume ratio of 0.32 and 0.11/~-~, respectively. The 
interface between one tRNA and the synthetase is 
found to be equal to 1600/~2, i.e. about 25% of the 
total tRNA external surface. The absolute scale factor 
K corresponding to the data of Figs. 2 and 5 is equal 
to 0.336Mbarn (using as scattering-length unit 
10 fm). The value of Ioo of about 0.4 (+0.4), found 
on the average for the different contrasts (Fig. 2) 
agrees quite well with the value 0.43 estimated using 
(4.8) (there are about 1200 residues per molecule of 
synthetase, and 75 nucleotides per tRNA). 

The same method has been applied to data from 
a neutron diffraction experiment at low resolution on 
the satellite tobacco necrosis virus (STNV) (Bentley, 
Liljas, Lewit-Bentley, Roth, Skoglund & Unge, 1986) 
(see Figs. 4 and 6). Although it gave a reasonable 
value for Ap2 , the value found for Ap~ was much too 
high. One can interpret this aberration by the fact 
that the hypothesis of a random distribution of scat- 
tering fluctuations does not apply in this case. The 
equalities (5.9) have to be abandoned: SLR contains 
a contribution from these inhomogeneities not com- 
pletely eliminated by the Ioo correction (4.6) and not 
taken into account in (5.6), (5.7) and (5.8). Among 
the three possible determinations of K (5.5), the first 
one, involving the factors Ae and A, is very likely to 
be the least biased by this effect. Indeed, the factors 
Ae and A, correspond to the sum of intensities Ia (H) 
defined in § 2.3 and depend only on the partial struc- 
ture factors AF(H) (2.10) of the exchangeable H sites. 
The influence on Ia(H) of scattering-density 
inhomogeneities in the molecule cannot be larger, in 
relative terms, than the square of the ratio of the 
number of exchangeable H in the molecules (i.e. about 
twice the number of amino-acid residues and nucleo- 
tides per unit cell) to the number of exchangeable H 
in the solvent (i.e. about twice the number of water 
molecules per unit cell). In the case of STNV, this 
upper limit is equal to about 2.6%. A confirmation 
of this property of Ia (H) is given by the fact that the 

value of I,,oo found with experimental data is always 
practically equal to 0. The result of scaling with 
K = Ka is shown in Fig. 6 (K = 11.6 kbarn) assuming 
100% exchange for the evaluation of Apl and zap2. 
One finds thus 175 000/~2 as the area of one RNA 
and 5200 A2 as the external area of the protein per 
protein subunit [this value seems to be compatible 
with the subunit size estimation given by Unge, Liljas, 
Strandberg, Vaara, Kannan, Fridborg, Nordman & 
Lentz (1980) from electromicrographs] and 75 000 A2 
as the area of the RNA/protein interface: this corre- 
sponds to a surface/volume ratio of 0.53 A-1 for the 
RNA and 0.21 A-1 for the protein and a RNA/pro- 
tein contact of about 40% of the RNA surface and 
25% of the protein surface. These numerical values 
represent only rough estimations of these areas 
because of the uncertainty in the contrast parameters. 
Again the order of magnitude, Ioo-~20+20, agrees 
quite well with the value of 10.5 predicted by (4.8). 

6. Determination of Fobs(0) and Wilson's statistics 

Another application of the low-resolution sum of 
intensity calculation is the determination of Fobs(0) 
for a given experimental data set Fobs(H). This quan- 
tity is dependent on the model used to describe the 
system. If one uses a model where the solvent is 
eliminated from the calculation of F(H) by consider- 
ing only the density difference p( r ) -P3  between the 
molecule and solvent [to define F(H) with respect to 
p ( r ) -p3  instead of p(r) (2.1) does not change the 
value of F(H) for H not equal to 0], the corresponding 
value of Fobs(0) is given by 

F°bs(0)----V[ ~i=1 (Pi--P3)fi] K1/2 (6.1) 

or 

according to (2.6), (2.13) and (2.14). At the concentra- 
tion of zero contrast for one of the components, c = c2 
for instance, this expression becomes simply 

Fobs(O)=[SLR(C2)f,/(1--f~)] 1/2. (6.3) 

This relation can be obtained directly using a convo- 
lution (Sayre's) equation applied to a system with 
two uniform density levels. 

The use of a Wilson plot [i.e. the spherical average 
I(Q) vs Q2] to determine the same Fobs(0 ) is theoreti- 
cally possible. An example of spherical averaging of 
diffraction data is shown in Fig. 1. The result, as 
explained in its caption, can be interpreted in the 
following way. By contrast with the usual Wilson's 
statistics, one has to consider here that the elementary 
scatterer, assumed to be randomly distributed in the 
unit cell, is the entire macromolecule (or that part of 
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it that is not matched out by the solvent) and not 
the individual atoms. The corresponding coherent 
scattering factor is equal to the square root of the 
spherical average of the squared modulus of the Four- 
ier transform of the difference between its scattering 
density and that of the solvent, i.e. it is the usual 
average small-angle-scattering form factor of the 
molecule in the solvent. Consequently, the role of the 
atomic form factor and temperature factor is taken 
over by this form factor. As explained in the caption 
to Fig. 1, the spherical average I (Q)  of the intensity 
I (H) diffracted by the Nm molecules in the unit cell 
scales with the isotropic small-angle scattering of the 
Nm molecules, multiplied by the number of centering 
translation symmetry elements Mp. Let us call Io the 
value at Q = 0 of I (Q) ,  obtained by a linear extrapola- 
tion to 0 of I (Q)  as a function of Q2. This quantity 
is related to Fobs(0 ) (6.1) by 

Io= MpNm[ Fobs(O)/ Nm] 2. (6.4) 

The practical use of this method is, however, very 
inaccurate because of scarcity and scatter of data near 
the origin of reciprocal space. The use of a relation 
like (6.1) or (6.2) and a value of K given by one of 
the relevant relations in § 5 [an example of this combi- 
nation is given by (6.3)] will probably give a better 
result although the value of K may only be 
approximate. 

7. Remarks 

Finally, we would like to add the following remarks: 

1. Low-resolution diffraction and small-angle scat- 
tering. According to kinematical theory of scattering, 
the proper definition of F(H) should read, instead 
of (2.1): 

F(H) ~ [ p ( r ) - ( p ( r ) ) s ] e x p ( i H . r ) d r  (7.1) 
uni t  cell 

with 

I (H) = (F  (H) F* (H)) ,  ( 7.2 ) 

where (...)~ is the statistical or thermal average over 
the whole sample. The reason is that the first-order 
perturbation calculation, which is one of the basic 
approximations of the kinematical theory, cannot be 
applied to the average interaction potential over the 
whole sample (except for very small samples) 
(Landau & Lifshitz, 1981), but has to be applied to 
the difference p(r) - (p(r ) )s .  The expression (7.1) is 
the same as the expression for the scattering ampli- 
tude in small-angle scattering. The difference between 
(2.1) and (7.1) has no practical consequence because, 
for H not equal to zero, both relations give the same 
value of F(H).  The advantage of (7.1) is that it gives 
a unified expression for diffraction (and especially 
for low-resolution diffraction) and small-angle scat- 

tering on the same crystal. Its drawback is to introduce 
some useless complications in model calculations. 
The corresponding value of Fobs(0) is related to 
imperfections in the crystal. It is proportional to the 
standard deviation of the statistical density fluctu- 
ations in the sample. 

2. External surface and Porod's law. The applica- 
tion of Porod's law to such systems raises the ques- 
tion: which external surface is really measured? The 
answer may be found by remarking that Porod's law 
actually provides a measurement of the mean area of 
the projection of the object on a plane, assuming the 
object to be oriented at random and convex (if it is 
not convex, things are a bit more complicated but 
not basically different). The external area is taken as 
equal to twice the mean projected area, as is the case 
for a convex object oriented at random. From this, it 
is clear that surface details small compared to the 
Porod characteristic length, which is equal to four 
times the volume/surface ratio [see (3.2)], are washed 
out. But, on the other hand, this shows also that 
modeling a molecule by a smooth surface is a reason- 
able approximation at low resolution. 

3. Structural hierarchy and Wilson statistics. The 
use of spherical averaging of the diffracted intensity 
has revealed a structural hierarchy in biological 
molecules from the diffraction point of view. If the 
results are interpreted in terms of Wilson statistics of 
elementary randomly distributed scatterers, in the 
low-resolution diffraction range (Q < 0.4/~-1, i.e. d > 
15A), the elementary scatterers are the whole 
macromolecules. This is followed by a domain where 
the elementary scatterers are the amino-acid residues 
and the sugar-phosphate groups and bases or base 
pairs of the nucleic acids as shown by the results and 
discussion of Iv in § § 4 and 5. The recognition of this 
hierarchy may help in modeling a macromolecule 
using data at progressively increasing resolution. 

The neutron diffraction data referred to in this 
paper have been collected at the Institut Laue- 
Langevin (Grenoble, France) on the low-resolution 
diffractometer D17. 

The author is very grateful to Drs D. Moras, R. 
Giege and co-workers, and to Drs L. Liljas, G. Bentley 
and co-workers for making their data available to 
him for the calculations presented here. 

The author wishes to acknowledge sincerely the 
help given by Dr A. Lewit-Bentley and Dr G. Bentley 
during many discussions on these problems and for 
a critical reading of the manuscript. 
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Abstract 

A recently formulated method of deriving exact Four- 
ier-series representations of joint probability density 
functions (p.d.f.'s) of several normalized structure 
factors is applied to the derivation of an exact 
expression for the conditional probability that the 
sign of the triple product EhEkEh+k is positive. The 
relevant joint and conditional probabilities are 
derived for the space group P1. The Fourier 
coefficients of the p.d.f, are given by rapidly conver- 
gent series of Bessel functions, and the convergence 
properties of the Fourier summations are also found 
to be favourable. The exact conditional probability 
is compared with the currently employed approxi- 
mate one, well known as the hyperbolic tangent for- 
mula, for several hypothetical structures. The 
examples illustrate the effects of the number of atoms 
in the unit cell, the magnitude of the E values and 
the atomic composition on the exact and approximate 
probabilities. It is found, in agreement with previous 
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studies, that the hyperbolic tangent formula may 
indeed significantly underestimate the probability 
when the number of equal atoms is small and the E 
values are only moderately large, and when the struc- 
ture contains outstandingly heavy atoms. The 
opposite behaviour, i.e. the approximate probability 
overestimating the exact one, was not observed in the 
present calculations. For large values of the triple 
product in equal-atom and heterogeneous models, 
the agreement between the approximate and exact 
probabilities is usually good. 

Introduction 

The well known hyperbolic-tangent formula, from 
which the probability for the positive sign of a triple- 
product structure invariant is conventionally esti- 
mated, is one of the most important relationships in 
applications of direct methods to sign determination. 
The current version of the relationship is based on 
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